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Abstract — Three-dimensional elastic interactions between a half-plane crack and sources ol internal
stress such as unconstrained sheuar transformation strains are analysed using Bueckner's recent
“weight function”™ method of three-dimensional crack analysis. Analytical expressions are given for
the stress intensity factors induced along the crack front by unconstrained shear transformation
strains for several simple shapes of the transformation domain centred at the origin. When the
centre of the transformation domain 1s not coincident with the origin of coordinates analytical
expressions are too cumbersome to be of much practical value. In such instances, numerical results
are presented for transtormation domains tn the shape of a sphere and an oblate spheroid. The
influence of the orientation of the latter s also studied.

I INTRODUCTION

In the last few years considerable advances have been made in understanding the mechanism
of transtormation toughening of ceramics triggered by an elevated stress ficld such as that
at a sharp crack front. In the majority of these studies (McMuceeking and Evans, 1982
Budiansky er af., 1983 ; Budiansky, 1983 ; Lambropoulos, 1986), the problem was modelled
as a two-dimensional crack system subjected only to dilatational phase transformations in
which the effect of transformed particles was “smeared™ out over the whole transformed
region. This continuum, two-dimensional plane stress approximation to what is essentially
a discrete, three-dimensional problem is adequate if the number of transtormed particles is
large but unlikely to be valid if the transformed zone spans only a few particles.

Recently, Rice (19835) gave exact analytical expressions for the stress intensity fuctors
in mode [ due to three-dimensional elastic interactions between a half-plane crack and a
source of internal stress such as transformation strains. Rice's treatment was generalized
to modes I, I and I by Gao (1988) using the three-dimensional “weight functions™
recently published by Bueckner (1987). It should be noted that the pioneering work reported
by Rice (1985). und Gao (1988) is restricted to dilatational transformation strains for which
the shape of transforming particles is irrelevant. [tis however well-known (Lambropoulos,
1986) that shear strains, shape and orientation of the transforming particles also have a
significant effect upon transformation toughening.

In the present paper which complements the work reported by Rice (1985), and Gao
(1988) analytical expressions are given for stress intensity factors induced along a half-
planc crack front by unconstrained shear components of transformation strains for several,
simple shapes of the transforming particles. The analysis is based on Bueckner's three-
dimensional “weight functions™ (Buecker, 1987). Analytical treatment is practicable only
when the transformation domain is centred at the origin. In all other cases the analytical
expressions are too cumbersome to be of much practical value. In such instances, numerical
results are presented for transformation domains in the shape of a sphere and an oblate
spheroid. The influence of the orientation of the latter is also studied.

2 MATHEMATICAL PRELIMINARIES

Consider a half-planc crack in an infinite elastic solid. The crack lics on the plane y = 0
with its tip along z-axis such that the region v < 0 is cracked. Rice (1985) showed that the
stress intensity factors A, (27) at location =” along the crack front (x = [, I, HI refer to
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tensile. in-plane shear and anti-plane shear modes) due to a distribution of transformation
strains ¢f, over a volume } may be written as

K(h) = lyj Ul v s~ e v 2) dx dy dsz {(H
)

where g is the shear modulus of the solid and L7}, is the fundamental stress field in mode
x defined by

Urn = My + ) 2+ /(1 =20)]8,0h0,, - 2)

In eqn (2) A, = (b Ay, hyy). with components A, are weight functions for a half-plane
cracked body. d,,, is the Kronecker delta, Latin indices range over x, y, - and when preceded
by a comma denote differentiation with respect to that coordinate, and summation is
implied by repeated indices. Expressions for U}, may be found in the work by Gao (1988).
An explicit solution for A, was given by Rice (1985). Recently, Bueckner (1987) derived 4,
for all modes in terms of a Papkovitch—-Neuber potential function G(x, v, 2).

C( C
Glx.y.z—) = "In <q+t) (3)
8 4=
where
. ; . . i
= Jlv+HiE =1 g = ReJR0v+i] = /(2p) cos
and

p=J7 437, tan g =yix and Gy = —/[4(1—-v)n' 7).

p and ¢ represent polar co-ordinates in the (v, z) plane such that the crack faces €7 and
C  can be distinguished by ¢ = 1, —n, respectively.
Interms of G(x, 3.2 =27, the x, p, = components of' /1, are
Iy = —(1=-2v)G,, —G,,,
Iy, =201 =G, —~yG.,,
b, = —(1=-20G,. -G, {4)

"’/;. -2(1 - V)!/;f +}"///1,,r
fy, = = (1 =20+, B=1L1I

=20 =)+ 1y (5)

i

It

hﬂ:

where

(2—v)gy = —G.,.+ 200 —v)H. +2iH,,

Qv = —i{G.,+2H, ) +2(1 —v}H..

Q== -G, —iG,. -2 =vH.; (6)
(2= = (L =vNG. . +2H. ) -2H
Qv = -1 —-v)G +2H. + 21 —v)H,,
Q=i = {1 =v){G, +iG,. - 2H.) )
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and
H=1vG.,—xG,,. %)
For pure dilatational transformation strains

émn

er(x.v.2) =07(x.p.2) 3 9)
eqn (1) is considerably simplified :
o _ M 2 T - -
K2 () = 3. U307 (x,y.2) dx dy dz, (10)

where superscript D denotes dilatation. The problem of computing K?(2") analytically was
completely solved by Gao (1988). In this case U7, are related only to G.,, and ¢, which
are readily calculated.

U, =2(14v) cos (r/)/Z)[l -8 %, sin’ (r/)/Z):I/A“

Ul = =201 +Wy, (B =TT (1)
where
a. = sin ($/2) [2—3” +8 ”Z: {cos= ($/2) - I_v}]//l(,
2oy TOR 2y
Yo, = dp(z=2") sin ($/2)/(A,R7) (12)
and

k] b}

R =x+y 4 (z=2), Ay =2(1-v)(2r)"p'*R,

In the present paper we complete the solution for unconstrained shear transformation
strains with &f, = ¢! (n # m), for which eqn (1) reduces to

Ki(z) = 4;1J‘ Uzel, dxdy dz  (m # n) (13)
y

where we have used the superscript S to identify the pure shear contribution to the stress
intensity factors. {f K7 denotes the mode « stress intensity factor induced at the crack front
by external loading, then under any arbitrary (internal) transformation strain ficld and
external loading the stress intensity factors may be obtained by superposition

K(2) = K3+ KD+ K(). (14)

The calculation of stress intensity factors due to unconstrained shear transformation
strains presents several difficultics because the derivatives of G(v, y, z—=") with respect to
x and :z such as G.... G.... and therefore the functions U}, (4, j # y) involve real and/or
imaginary parts of log-likec complex functions. General expressions for G... and G. .. are
given in Appendix A.

Formally, the expressions (13) may be reduced to the following non-dimensional form.
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S ’

K3(z) = 2 j{src“p [(l—cos¢ ’cosz¢)+4p—:(l—605¢—’coz¢)
T W ) U R R -

+32£—; cos ¢(l —cos* d))]— Q)p—(R-j 2 [(l +cos ¢)—8-—(l —cos’ ¢>):'
+ef,%1;:—:) [(l —cos ¢)+8£—;(COS ¢ —cos” ¢)}—8_~T‘(l—2\-)6.,~.} dv

(15)

KS(z) = A_Z_J {FT w_&‘I__“l:p_}v)(— [ +cos ¢—2 cos™ ¢)
T L U R LT )

+4£—;(—v+(4—7v) cos ¢ —2(2—3v) cos® ¢)
4

+32 rm(t cos ¢ +2(1 —v) cos* ¢ —(2—v) cos’ 4’)}

— ‘,- l)(,IE:i - ) _7 ’ "__ I3 N !,f,
£l i finys rE |:( 24+ 5v+(2-—3v) cos ¢) rE
- R‘(‘+ 2(1=v) cos ¢p—(2—v) cos® (b)]

T ()I’(-"-) p* )
& — 2 z - ) _ N 08
4(7 v) |:4R3(4 13v+8v-+v(3 —4v) cos ¢)

4

+32 24 (v cos P+ v(5—4v) cos? ¢ +v cos’ (b)]

20 —v)(1 =2v)
—£l - (_v)——— rG,, }dV

2 (1=v)Cy(z=2) N
Kiu(=) = T}‘)J{t‘r‘ “2—npiRT [(’ 2v—2cos (b)k’i

p? (1= v)C()q
+ 1 4(«.os(b cos® d)jl £ "(7——v)pR

(16)

[(7+;)+R( 324+ (32—4v) cos ¢p)+32 4(l—cosd))j|

—el _)((l’ _“))i"; [—5v—(2-—4v) cos ¢ — (4 —8v) cos® ¢

+ B (=4412v= (28+4v) cos ¢ —(16=320) cos’ @)

Y
+32 27 (cos ¢+ (1 —2v) cos® qb):|

“_*(‘%_ Im (G.m)} dv (17)
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where

p = Im J2(x+i¥)] = J(2p) sin ($:2). (18)

To arrive at the non-dimensional form of stress intensity factors (15)-(17). we first intro-
duced the non-dimensional variables identified by an asterisk

x*=x/a, y*=yla, *=:zla, K%)= K ()(E/a)

a’ . a'
B \/_G'r:v G-r‘x':‘ = —G-u’:'
a

and then for brevity omitted the asterisk.

Calculation of K? for any arbitrary V involves complicated integrands such as
Re (G....). Im(G....) and Im (G...) (Appendix A) which require numerical integration. How-
ever, the last term in the expression for K{(z") will vanish if £7, is a function of y alone.
Likewise, the last term in the expressions for K3 (z") and K3,(z") will vanish provided either
&l is a function of y alone or €, is an even function of y and the region V is symmetric
with respect to v (sce Appendix B). The expressions are further simplified if the uncon-
strained shear transformation strains are functions of y alone and the region ¥ is symmetric
with respect to . In this case, besides the last term involving G(x, v, 2). the terms containing
the variable p = \/2p sin (¢/2) also vanish.

dv* =dVia', G*..

3. SIMPLE TRANSFORMATION DOMAINS

As mentioned above, for an arbitrary transformation domain ¥ the integrals (15)~(17)
must be evaluated numerically. In several instances however it ts possible to express the
integrals as infinite series, provided there is no contribution from the terms involving
G(x,y.z). In this section we will first demonstrate this *“‘analytical™ procedure on the
spheroidal region (Fig. 1)

., d ,
(x—xg) +p+ ;_;(:—:0)‘ <1 (19)

and then obtain complete solutions for the spheroidal region centred at the origin
(xy = yo = 2 = 0). For the spheroidal region (19), and indeed for an arbitrary ellipsoidal
region to be considered numerically in the next section, we introduce ellipsoidal coordinates
r.0.¢

x=rcoscos ¢

b
y=~rcosfsin
a
¢ .
z=-rsinf (20)
44

such that in general the coordinates of the centroid of region V, x,, ve. =, transform into
ro. Ug. $o. We have used an overbar to distinguish the cllipsoidal coordinate ¢ from the
cylindrical coordinate ¢ appearing in integrals (15)-(17) and elsewhere. ¢ is related to ¢
through

2 s

cos ¢ = cos d)’/<cos2 ¢+ b sin’ (5) B @

M
a

For a spheroidal region, ¢ = ¢.

SAS 215:6-R
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-

or i
g,
b7

by 2

Fig. LA halfeplane crack, and region V (with ¢ = b, p, = 0) which has undergone transformation
strains showing the Cartesian and cllipsoidal coordinate systems.

The lower (/) and upper («) limits of integration for an arbitrary ellipsoidal region are
calculated us follows.

For the radius r = (,\'3 + :i}: + ?}i";z)‘z‘
rnE<rr, )

where
Fut = ro €08 2+ /[(rg cos 2) = (ri— )] o

and a is the angle between radius vectors ry and r such that
cos @ = cos 0 cos (¢ —,)+sin ¢ sin 0. 24

For pg = | (where p, = [(x3) + (@ro/b)*]". not to be confused with cylindrical coordinate
p = (x 4+ 1" appearing in integrals (15)-(17) and elsewhere),

Fo-B=d<d<d.=Fot+h (25)

where
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Fig. 2. The subregion 1 consisting ol the torus m and certain portions of C*, C and V.

f= sin”! (I/pa): po=1 2
0; yo=0 0
tan~' <‘-l":2); Xo>0
£ hx,
[ M
] ((1}'0> @7
tan Sl+m x, <O
bx,

For py, < I, —n € ¢ < n. Finally, the limits on 0 are calculated from the solution to the
incquality

l—risin®220. (28)
We note first that
0: o=
0, = nf2; po=10 (29)

tan~" (:"—) otherwise.
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The lower and upper limits on & following from the solution of (28) are given in
Table L.
In Table 1

5 = rap [~rr§ cos 0y sin by cos (@~ ) +ro [(ri — 1) {1 ~ri cos™ 8, sin” (6—:5«)}]]

oF * .
1 ~r; cos™ B,

2, =tan~" [;l—:sgi—((ﬁ %) ] 30

rdsin 20, cos (¢ —d,)

For the special region described by (19). ¢ = b. $, = B and ¢ = ¢, such that p, = x,,.
F, = 0. thereby considerably simplifying the limits of integration. [t should however be
borne in mind that when |xy| € 0 and |y, < b the integrals huve a meaning only wn the
mathematical sense. For |x,) < 0 the tntegrals can be interpreted physically only when
vol 2 b. For the region (19) and constant transformation strains the integrats (15)-(17)
simplify to read

K{) = ( C» SiF J‘ j FL0. py do de (31)
‘s\/'? ¢, 8, .
-y -\ - K -
Ki(0) = (2~ (1 +v) at .ﬁ L PO, ¢) dO de
8\/’2 c ¢t p 5o, F1L0, ) dO deh kR
A(Z—l’)“%‘l’) 0(11“‘: 0 J, o) A0 dp - 32)
s
5 \/ (l~v) ot
{ ) 0
K = 3 2150 © JJ Fo(d.9) d0 dg
4./2(1=v) c " u, "
e 0, { 13
(2- \)(l+t)C0a}"J:; s, F:(0.9) 40 dp(33)
where (m #n, a =1 1L L)
(/)/')
i, = (\/r,,—\/n)hka U )(cos Ofsin U) ~a-» cos' ¢ (34
Jeos 8

and "™ between ¢/s and between cos 0/sin 8 means that either cos ¢ or sin & term appears
in (34 together with the corresponding coethicient o, [U,) or @, [U),,).

Table 1. Lower and upper limits on ¢

fo U, i,
<! -l n2
l gy = u -n2 nl
thy, = ni2 0 n2
0, = ~n2 ~r 2 )}
7> 0,>0 ~tan ' [cos ($~p.)itan ) n2
0>t,> —n2 -r2 —tan ‘feos {h =Py tan B}

>1 pa < | a0 z! T2
Za < —a 2 2,
Po = { w20 X, 72

<0 ~72 z,

Po > 1 20 %
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In(34).k=0.1.2andi=0,1.2,3 and

2k
cos™ 0
b, = - PR (39)
- [
(cos‘ 0+ — sin” 0)
z
The only non-zero coefficients «;,[U},.] and i [U},,] are
lf/‘“[('rl‘:]: (r‘“) = l. (f” = — l. ‘le = 8. aJ:: = _8 (36)
a [UN]): dy=—(2=3v). a4 =2=-3v). aj);=—-2(2-3v)
dip=—d, af, =43-=-Tv), d\.=-8Q2-3)
ay, =32, a% = 64(1—v), b= —=32(2-v) (37
@ [UY]: daly=5v=2 a), =2=-3v. day=—8v. «%y = —16(1—-v), da% =8(2-v)
(38)
@ UV die= =2v+2 & = =2, a\ =16, day, = —16 (39)
d (U] day = 24w, djo= =32, df, =32-d, d% =32, oy = -32. (40)

The next step in the evaluation of integrals (31)-(33) is to expand r,, r,and b, appearing
in (34) in powers of sin 0 and cos 0. This allows us to express the integrals (31)-(33) as
multiple sums involving powcers of sin ¢ and cos 0, but we find that the resulting expressions
for AF(0) are too cumbersome to be of any practical use thereby negating any advantage
this procedure miy have over the direct numerical integration of (15)-(17) that will be
presented below. However, for a spherotdal region (¢ = b) centred at the origin, the integrals
(31)-(33) can in fact be evaluated as a single infinite sum using the procedure involving
expansion in powers of sin ¢ and cos 0.

In this special case, it can be shown that the only non-zero components of the fun-
damental ficlds U}, are U') and UY!. Therefore, for constant transformation strains, we
have

Ki=0 (41)
‘ 2
Ki(0) = (IT#T) Ef,. , U,'J‘, dv 42)
-y 2 1 1
Ku(0) = mﬂr , U, dv (43)
where 17 x 437+ gl
e
Oblate spheroid, a > ¢
K@) =0 (44)
8./2 ¢ i Y {4 3 1
B0y = — Y Cy-el -} 92(2-3v8| -, =
Rl = - Goyaen Cat Z<' a-) {5( 3‘)8(4 m 2)

16 7 1 64 m 11 l
+ 1’5“*")('”*”')8(5,""*‘ i)_ ﬁ)—g(ll—‘)v)(_:;)_B(T,m-i- i)} 45)



600 B. L. KarmaLoo and X. Huasg

Ky ( \)(l—H) nu 2 —a ~{24v) m-+—:'
7 1y 64 ° 11
~(16+\><m+n8( m+ ) 6(:”2) B<4+m i)} (46)

Prolate spheroid, a < ¢

Ki(0)y=0 (47)

: 8.2 a x a- Y {4 i
-8 A ST o _a 2.3
KO === “cg“',,gn(l (_:j{( ')B( i 2)
16 at (7 ! 64 m\ o (11 I
+ TS.(I%—V)(”IA}-I}(?B(:‘ +H.‘..2)_ l(}g(ll—g")(*‘}) (4 8(4 -+ 1, 2’)} (48}
’"’(l—\) X" , 3 I
et I (-t e )
4 ot | ”23 7 | 6d( m a"B 11 i "
+_i( + v+ )(:3 4+m.j —3\oa) a8y o e (49

Sphere, a = ¢

K0y =

KJ0) =0 (50
. 2.2 326 301
IR - N v - - \ - S
I\”(())—(2__\')“+V)(“1.”(9 5 \>I)’(4.2> (50
» 8/2(1—v) 38 3 !) 5
K0y = 5(7_‘)(1+")C(» vz ( 9 *V)3(4. 5 ) (52)
In (44)-(52)
i
Bip,q) =J‘ ' =x) P dy (33

The analytical expressions (50)-(52) were also uscful for checking the accuracy of the
general numerical integration procedure which is deseribed in the next section.

4. NUMERICAL RESULTS AND DISCUSSION

For an arbitrary ellipsoidal domain V centred at x,, vy, =4
(\“\70) + (“"ie)) +’ (- :n}zé ! {54

and constant transformation strains £,. the integrals (15)-(17) were evaluated numerically
using the Gaussian method. To enhance the rate of convergence of the singular integrals
as R — 0, ellipsoidal coordinates (20) were chosen which allowed formal integration of
(15)-(17) with respect to the coordinate r such that the integrands took the form



Three-dimensional elastic crack tip interactions with shear transformation strains 601

(Vfru-\/r;)f(ﬂ. (5) (55)

where the upper and lower limits of integration on r are given by (23). The ranges of
integration with respect to § and @ given by expressions (25)-(29) were each divided into
2% = 8 intervals, with each interval being represented by six Gauss points.

The accuracy of the numerical integration scheme was checked in two ways. First, by
comparing with the analytical results (50)-(52). It was found that the numerical results
differed from these by less than +0.01. Secondly. by increasing the number of intervals to
2* = 16. It was found that the results hardly differed from those obtained with only 2° = 8
intervals.

The numerical integration scheme was used for an exploration of the problem at hand
for a general ellipsoidal domain V. In particular, attention was focussed on the spherical
domain (¢ = & = ¢} and the oblate spheroidal domain with a = b and a/c = 5. The choice
of these two shapes was dictated by the fact that zirconia particles are spherical when found
in an alumina matrix or as thin oblate spheroids when found in partially stabilized zirconia.

In an extensive numerical exploration of complex and singular integrals it is essential
to have at least some independent checks on the qualitative, if not the quantitative, accuracy
of the results. This was done by a close examination of the properties of U}, appearing in
integrals (15)-(17). 1t was found. for instance, that U}, possess several symmetry proper-
ties with respect to v and z which influence the final result (i.e. K3). The behaviour of U2,
with respect to y and z for various m, nnand « is evident from Table 2. Moreover, it was
found that

Ki{(=p)=~-K{(»); z4=0
Kiv(_:): "'Kis'(:); Yo =
Ki(=») =Ki(y):  z,=0. (56)

Finally, it was found that the dominant contributions to K7, K3 and K3, came from U,
U' and U, respectively. The remaining UZ, made but hittle contribution to K¥, Therefore,
K7, K. Ky exhibited essentially the respective symmetry behaviour of Ul,, UY. and U
(Table 2). This observation was useful not only for performing a qualitative check on the
numerical results, but also in simplifying the graphical presentation of the latter, in that the
stress intensity factors could be plotted to within a factor of the strain &/, corresponding
to the dominant UZ,. Thus in the tigures to follow, the scale for K7 should actually be read
as K7/el,. In dimensioned quantitics this scale represents (K7 E\/a)/el,. Similarly, the scale
for Kjj in dimensioned quantities should read (K3 E(/a)/el,, and for K} should read
(KwEJa)/el..

[t is now possible to comment on the typical behaviour of K3 as demonstrated by the
numerical integration procedure (v = 0.3). This behuviour was found to be qualitatively
totally consistent with the above observations. Typically, | K7 for ¢fc = 1 was found to be
consistently larger than that for gfe = 5 (Fig. 3). However, the variation of |K7| with
|zol > 0 was similar for both shapes; |[K}| decreased with increasing |zo| 2 0, initially rather
slowly but then more rapidly.

Table 2. Behaviour of UL,

mm

2=

x=11

a =1l

xy

Uh(=3) = =UW(»
V(=3 = UL

Ull—3) = =U.(»)
Ul(=3) = =UL(2)
U= = = Uiy
Ull=2) = = UL(3)

UL~y = U%(»)
UM~ = U
V(=) = UL(»)
Ul=2) = —ULE)
Ul(=y) = =UN)
Ul(~2) = —ULNR)

US(=n=UMp
UB-2)= -U%©)
Ul-n =Ul»
UH(-n=U)
U=y = - UM(y)
Ul(-2) = VW)
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Fig. 3. Variation of A7{0) with x, for two typical values of v, and of a/c (a = b).

The shape of region ¥ has a far more pronounced influence upon |Kj| than upon
KT 1K) for afe = 5 is not only much smaller than for ¢/c = | but it diminishes rapidly
with increasing |z,| > 0. For ¢/c = 1, |K3}| seems to achieve (Fig. 4) the maximum value at
or near |z, = 172 and then decreases with increasing |24 > 172

As far as | K3, | is concerned, the shape and location of ¥ seems to have an effect on it
similar to that on |K7|. Thus, |K3,| for ¢/c = 1 is consistently larger than for «/¢ = 5 (Fig.
5). However, for both shapes it decreases with increasing |z, > 0, although the rate of
decrease is different. For afc = 5, it decreases rapidly with increasing |z,] > 0, but for
a/c = 1 it decreases rather slowly in the beginning.

Up to now, we were only interested in the shape of the transformation domain. We
found in particular that spherical particles give a larger |K¥| than do oblate spheroids with
long axis normal to the crack front (i.e. parallel to x-direction).

It is known however (Lambropoulos, 1986), that the orientation of the long axis of
oblate spheroids relative to the crack plane has a significant influence on the extent of
change in K, due to dilatational transformation strains. It is therefore of some interest to
examine the influence of orientation of oblate spheroids on the stress intensity fuctors K7
due to shear transformations strain, We consider an additional orientation, namely when
the long axis is parallel to the cruck front (i.c. parallel to z-direction). An example of this
orientation of oblate spheroids which corresponds in size to the previously considered
orientation (long axis parallel to x-direction) is simulated by choosing a = b, a/c = 0.2.

When the long axis ts parallel to the crack front (i.e. parallel to z-direction) numerical
computations for ¢ = b, afc = 0.2 show, as expected. that the variation of K$(0) is more
pronounced with |z, than was the case for a = b, a/c = 5. Thus the maximum value of | K|
increases from around 4 at =, = 0 to about 14 at |z,] = 0.5 and further to about 75 at
izol = 1.0. The increasc is cven greater in [K]. Its maximum value increascs from about
0.6 at =, = 0 through about 22 at |z4] = 0.5 to about 850 at |z, = 1.0. The largest increase
is noticed in | K. Its maximum valuce increases from about § at =, = 0 through about 14
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at |zy] = 0.5 to a colossal 1830 at |z,] = 1.0. This behaviour is quite consistent with that
expected from analytical considerations.

Similar changes to K (0) can be expected when the long axis is normal to the crack
plane (i.e. parallel to y-direction). In conclusion, it should be added that further in-depth
numerical exploration is in progress to gain a deeper insight into the extent of variation in
K3 (=) due to changes in the position and orientation of §. In particular, attempts are being
made to derive useful analytical expressions for K3 (') in the limit as A} - 0.

Acknawledgerment —We are grateful to Professor J. R. Rice for giving us draft and final copies of the report by
Gao (1988).
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APPENDIX A

For an arbitracy domain F, U and therefore K7 will contain the term Re G, which may be rewritten in a
non-dimensional form

Re (i, = Re Q.. +Im (...

{z=2)

5 .
=2C, s 4imG (AD)

- TR

Likewise, U and {1, and therefore K and K3, will contain the terms Re G, and I G respectively, which
nity be rewritten iy

Re G, = ~Re P . ~Re G,
oIS P —eos iy b —Re 6 (A2)
1 Rg R R_v A3333 A=
ImG. .= -ImP . ~Im¢...,
Co- o d—te2cospr=(16-8co m".‘ +16(1 U‘.m"‘ Im G (AD)
- S 2eosp)— —¥cus “y —Cos il e £
"R n B o8Ol g3
In(AD (AW P =G, +iG.and P =G,,.
To complete the discussion, it only remains to express explicitly G, and (... We begin with ¢/,

G-:: e G-:."::‘: + G-;C‘::

Coy ki ana P g 3 ) b : -\"-: .
—(I:R_‘{(_p—-,\)-é--R:(,\ 7} 5 (2 p)?-d:( X}

Taglz =3 : 3 : 3
-—is,,,q(‘ ,«»~) {l ~2 {l—cos )+ _;[l -—-2*2(:05(“1.‘05(})—‘)}}—« -
d R : 2 - 4

i

~

(A4}

+

'y

where
d= J[+(z-2)

and
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G 1 l
Rec—.=C‘,{RewRe_—5-lmwlm :;}
¢

5

Im

r‘IQ

1 1
=C0{Rewlm,—5+lmee,~5}4
5

In (AS)
such that

and

l ¢ +d+q/[2d+ )]

Re w =
2 G ed—q[2d+x)]

29 Im{
VI = +(Q2¢ Im {)F)

1 1 d+x\? | d—x\"?
LD ¥ Balhibid 2 _ v W
RLC;—‘I..‘IL){( 24) [ —(z=2) %2 ( d) Xz .)}
1 | d+x d—x\"?
DL S s | (2R
Imc, d d"’{ ( d) x(z .)_t( 2(,) [x*=(z=32") |}

where the ** — " sign s chosen when (z-27) < 0.
Finally, ;... 1s given by

. 2C,q= 3 | 2
G, = R {<2p+ 2;:—4.\) (1 R )( 2p )(\—p)}
2Cq: 3 1 2 )
d 2 T -3y T T T YT
+ iR {(-;H- 5 4.\)+<R: + d’)( I ) p .r)}

_I‘ggf( {l+ }—’ ~~~~~ 5 (1 —cos ¢)-—3 ;wsd) (cos ¢-—l)}

Im @ = sin™'

d?

’C.,q:' 3 R 2
+i TR {l«f--—._p(l—(.osdt)( F)}

2Cyy=t k} o 12
+l7‘R2 {l+2—3p cos ¢ (cos ¢—1) Rt

3G, : 2
4 {4~—[;r+(- -)‘l—(Jﬂ-rH:-:')'l}

4R’
3 Cu‘l(-—- ) 15 G
L AR _ 4‘ _ 15G
i 4R {(" 3 +4 2 (x p)} iy o
where
. | |
Rc%:Cu{Rcw Re 5 —Im w Im —;}
5 e C
! 1
lmg=Cn{Rc(u Im it Im w Re ;'1'}
and

I { d+ U4 N d—-x 12 , ,
Rc~,=‘—l—,—d—ﬁ{( ;") [-“‘—1‘(2—:')']1(—2‘1—\) (:—:)[3.\"—(:—:)1]}

| I d+x\"? , N 2 d—x\" ) .2
imgr= g -(57) -0 otz (57 e vweer.
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APPENDIX B

In order to prove that the last term in each of the three expressions (135)-{17) vanishes when &, is a function
of y alone, consider the region | with the closed, smooth surface

S y) € 2 € 2 () (B1)

Within the region ¥ consider the subregion ¥ consisting of the torus e {surface x”+ 37 = &% ¢ « 1), and certain
portions of the crack faces C*. C~ and the region V. Bueckner {1987} has shown that G(x.v.2) and G, are
harmonic in F7, and G{x.0,. 2y and G, (x.0.2) are harmonic on C*, ¢ and w. He has further shown that

Iin}f ...dl'mJ L.die (B
e==0 |y ‘

Referring to Fig. 2 and assuming in the frst instance £,{0.0) # 0 and (0,0} # 0, we have

-

J e NG (b o) dedy de
i
- J dyde el G v e ) = Gy, 2y (v )]
5

= f \f:..'.(y)[(i(.\‘;(_v).y,:;(x:(,r).}‘}) =Gl vz d ) vn
=G ), 2 (OO A G () vz (e (o] dy
—J LN = ¢ p s =3 ) = Gl JET ~p e o - JE =)

L N (AN N L CEE S B0 B BN UL o TN S GRS M K (B}

The first integral in the right-hand side of (B3) vanishes because of continuity conditions

() = (e (v 1)

(0. 8 = nl (e, (B4

and so gives (with | < 1)

-

J LG, e vy dE = =2l (00)[Gle, (L - 87106, 2,6,/ (1 = 07), 0))

—G{—a (1 =07, 0, 2 (= e (1 = 07),0))
—G{e /(1 =07), 06, 2, (e (1 —07), 0c))
+ G =/ (1 =07, 00,2 (= e/ (1 = 87), 06))e. (B5)

Since 5,{0.0) # 0, 2 {0,0) # 0, it is clear from (BS) that

limj NG Ax ) dE =0 (B6)
& el} 1

In a stmilur manner, it may be shown that

iin}j el 0G4V = 0. (B7)
P 3

We will now prove the results (B6), (B7) when 2,(0,0) = 0. In this case of course 3,(0,0) # 0.
From (BS) it is clear that x ~ 0(z) and y ~ 0(e). In view of the fact that §” is a quadratic surface it follows
that = ~ 0t«). Consequently.

( +:
S~ 00/ g ~0(J/e). In gf,— ~0(h) {BS)

T
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and
1
G~ . (B9)
0(\/¢)
In the nght-hand side of (B3). the terms
G+e (1=0) . be.2.(+e, (1 -0).0e))e (B10)
can be shown to be of 0(/¢e). Therefore. these terms vanish as & — 0. and we recover the result (B6).
Likewise, in deriving the result (B7) we would encounter the terms
FG e (1= ) Oz, ( 26,/ (1 —07) )k, (BID)
which may be rewritten as
Cll (] G
e:','l:_, .q_. - C",q“‘ -5 (B12)
Sl =97) pelgt=0) ]

In view of (B8) and (BY), the term (B12) is of 0( /). Therefore it will vanish as ¢ — 0, and we recover the result
(B7).



