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Abstract - Three-dimensillnal elastIc interactions between a half-plane crack and sources of internal
stress such as unconstrained shear transformation strains are analysed using Bueckner's recent
"weight functil'n" methl,d of three-dirnensillnal crack analysis. Analytical e,pr~ssionsare given for
the stress intensity 1;lc!l,rs indu..:ed along the crack front by unwnstrained shear transformation
strains for several simpk shares (,f the transformation domain centred at the origin. When the
centre of the transformation dl,main IS not coincident with the origin of wordinates analytical
e'presSions arc too curnherS<lmc tt, hc of much practical valuc. In such instances. numcrical results
arc presl'nlL"d for transfllrmation ""mains in the shape (,f a sphere and an phlate spherpid. The
intluCI1l"C "f thc oricntation of the Ialter IS also studied.

I. INTRODUCTION

In the last few years consideraole ad vanccs have oeen made in understanding the mechanism
of transformation toughening of ceramics triggered by an elevated stress field such as that
at a sharp crack front. In the majority of these studies (MeMeeking and Evans. 19X2:
Budiansky ('f al.. 19X3: Budiansky. 19X3 : Lambropoulos. 19X6). the problem was modelled
as a two-dimensional crack system suojeeted only to dilatational phase transformations in
which the clkct of transformed rarticles was "smeared" out over the whole transformed
region. This continuum. two-dimensional plane stress approximation to what is essentially
a discrete. three-dimensional prnolem is adequate if the number of transformed particles is
large out unlikely to be valid if the transformed zone spans only a few particles.

Recently. Rice (19X5) gave exact analytical expressions for the stress intensity 1~lctors

in mode I due to three-dimensional elastic interactions between a half-plane crack and a
source of internal stress such as transformation strains. Rice's treatment was gener:dized
to modes I. II and III oy Gao (19XX) using the three-dimensional "weight functions"
n:cently published by Bueckner (19X7). It should be noted that the pioneering work reported
by Rice (19X5). and Gao (19XX) is restriclcd to dilatational transformation strains for which
the shape of transforming particles is irrelevant. It is however well-known (Lambropoulos.
1986) that shear strains. shape and orientation of the transforming particles also have a
signiJicant clfect upon transformation toughening.

In the present papa which complements the work reported by Rice (1985). and Gao
(19XX) analytical expressions an: given for stress intensity factors induced along a haIf­
plane crack front by unconstrained shear components of transformation strains for several.
simple shapes of the transforming particles. The analysis is based on Bueckner's three­
dimensional "weight functions" (Buecker. 19X7). Analytical treatment is practicable only
when the transformation domain is centred at the origin. In all other cases the analytical
expressions are too cumbersome to be of much practical value. In such instances. numerical
n.:sults are prescnted for transforrnation domains in the shape of a sphere and an oblate:
spheroid. The influence of the orientation of the latter is also studied.

2. MATIIE~tATIC"L PRELIMINARIES

Consider a half-pl.lne crack in an infinite clastic solid. The crack lies on the plane y = 0
with its tip along ;-axis such that the region x < a is cracked. Rice (1985) showed that the
stress intensity factors K,(;') at location ;' along the crack front (:1 = I. II. III refer to
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tensile. in-plane shear and anti-plane shear modes) due to a distribution of transformation
strains c!nn over a volume V may be written as

(1)

where It is the shear modulus of the solid and C~n is the fundamental stress field in mode
x defined by

(2)

In eqn (2) h, :: (/1/. ~II' I!III)' with components h". are weight functions for a half-plane
cracked body. 15mn is the Kronecker delta. Latin indices range over x.y.;: and when preceded
by a comma denote differentiation with respect to that coordinate. and summation is
implied by repeated indices. Expressions for U:nn may be found in the work by Gao (1988).
An explicit solution for ~l was given by Rice (1985). Recently. Bueckner (1987) derived II,
for all modes in terms of a Papkovitch-Neuber potential function G(x.y. ;:).

where

and

, ell (If+()G(x.y. ;:-;: ) = . In ----~

" q-"

(/J
J[x+i(;-;:')I. q = ReJ[2(x+iy)J = J(2p) cos 2

(3)

fI and (p represent polar co-ordinates in the (x.::) plane such that the crack faces C' and
C can be distinguished by 4> = rr. -rr. respectively.

In terms of G(x. .1'.:: - ;'). the x. y.:: components of h, arc

where

h" = -(l-2v)G" -yG.".

hll- = 2(1- v)G.,- yG.,.,

Itt: = -(1-2v)G.:-yGq ;

h/1. "" - 2( 1- V)!J/I +Yl~IJ_'

hp, = -(l-2v)l/!p+yl/!/J... fJ = II. III

h/I: "" - 2( I - ~')Iz/I +YI~/I.:;

(2-~')!J1I = -G.,+2(I-v)l/.,+2iFl.:

(2-v)h ll = -i(G.,.+2ff,,)+2(I-v)H.:

(2-V)I~1I "" -G.,-iG.: 2(I-v)fl.:;

(2-~')!J1Il = i(I-~·)(G.,+2H.,)-2H.:

(2-~')lzlll = -(I-v)G.,.+2fl.,+2i(l-v)H.:

(2-v)t~1Il i(l-i·)(G.,+iG.:-2H.,)

(4)

(5)

(6)

(7)
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and

H = yG., - xG.I"

For pure dilatational transformation strains

oT (,... ~) _ [JT(v •• _) 15",.
"",. "'."- - U "'."- 3'

eqn (I) is considerably simplified:

K'D(_') -
2/11,', nT(v .. -) dx d·' d-,- - 3 v v flU "'J'- .'-'

(8)

(9)

( 10)

where superscript D denotes dilatation. The problem of computing K~(::') analytically was
completely solved by Gao (1988). In this case Vii are related only to G.r ,. and l/!/i .• which
arc readily calculated.

where

and

U~i = 2(1 +\,) cos (rp/2)[I-S ~~ sin~ (rM2)]1Ao

(I':, = -2(1 +\')I~'I.I' (// = lUll)

I~II .• = sin (rp/2) [2.,- 3v +S fl: {cos~ (rPl2) - 1- v}J/Ao
_-v R 2-v

(I I)

( 12)

In the present paper we complete the solution for unconstrained shear transformation
strains with /::'. = I:!;" (n # Ill). for which eqn (I) reduces to

K~(;:') = 411 rV:".c::'. dx dy d:: (m # n)Jv (13)

where we have used the superscript S to identify the pure shear contribution to the stress
intensity factors. If K~ denotes the mode:L stress intensity factor induced at the crack front
by external loading. then under any arbitrary (internal) transformation strain field and
external loading the stress intensity factors may be obtained by superposition

K,(;:') = K~(::') + K~(::') + K~(::'). ( 14)

The calculation of stress intensity factors due to unconstrained shear transformation
strains presents several difficulties because the derivatives of G(x. y.:: - ::') with respect to
x and:: such as G.,:. G. n : and therefore the functions V~i U.j # y) involve real and/or
imaginary parts of log-like complex functions. General expressions for G.,: and G.,.: arc
given in Appendix A.

Formally. the expressions (13) may be reduced to the following non-dimensional form.
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.., i { C [ ,5 _' _ - r oP ..,: p- ..,:
Kd-)-(I+v) I Ln4pR : (I-cos¢-_cos ¢)+4R:(I-cos¢-_cos ¢)

Ki~(:,)=--~r{L:' ~oq [(2-3V)(-I+COS¢-2COS:¢)
(I+I")J 4pR-(2-v)

p-
+4R~(-v+(4-7v)cos ¢-2(2-3v) cos: ¢)

r Coq(: - :') [ P=
- f:,. ...._-- ,.--, (- 2+ 5v + (2 - 3v) cos 4)) ..,

'4(2-v)p-R' R-

~ ]p ,-x WI (1'+2(I-v) cos 1/)-(2-v) cos- (M

r Cop(:-:') [ p: ,
+f:., ... , . ., 4 --,(4-13v+8I"+I'(3-4v) cos (/J)

. 4(2-v)p'R' R'

p4 , ]
+32 R 4 (I' cos (p+v(5-4v) cos' (P+v cosJ (/J)

.r 2( t - v)( 1- 21'), }
-1.:\ (2-v) .lG.n: dV

'.\' -' 2 i{.r (I-V)C,q(:-:') [ ,p=K III (_ ) =--.-- f.,,··----,·-,-.-- (2-2v-2 cos (/J)-,
(I +1') I (2-v)p'R' R-

p4 , ] r (l-v)Coq+ 16 (cos ¢-cos' 4» -r;----..
R 4 Y:2(2-v)pR=

r (l-v)Cop [ ,
-f.:, ._------,- -5v-(2-4v) cos ¢-(4-8v) cos' (p

2(2 - v)pR'

p= ,
+ Ii: (-4+ 12v-(28+4v) cos ¢-(16-32v) cos' ¢)

r(I-I')(1-2v) }'
+f.:, (2-1') ylm(G."J dv

(15)

( 16)

(17)
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where

p = [m ,j[2(x+iy)] = J(2p) sin (¢/2). (18)

To arrive at the non-dimensional form of stress intensity factors (15)-(17), we first intro­
duced the non-dimensional variables identified by an asterisk

x* = x/a. y* = Yla. :* = :/a, K: S (:*') = K~(:')/(E../a)

dV* = dVja J
•

a4

G~,•.,.:. = -j-G.u : •

.... a

and then for brevity omitted the asterisk.
Calculation of K~ for any arbitrary V involves complicated integrands such as

Re (G,:::), [m (G,:::> and 1m (G.::) (Appendix A) which require numerical integration. How­
ever. the last term in the expression for Kf(:') will vanish if t;[, is a function of y alone.
Likewise. the last term in the expressions for Kf. (:') and Kf., (:') will vanish provided either
r.[, is a function of y alone or r.[, is an even function of y and the region V is symmetric
with respect to y (see Appendix B). The expressions are further simplified if the uncon­
strained shear transformation strains are functions ofy alone and the region Vis symmetric
with respect to y. In this case. besides the last term involving G(x.y. :), the terms containing
the variable fI = J2p sin (r/J/2) also vanish.

3. SIMPLE TRANSFORMATION DOMAINS

As mentioned above. for an arbitrary transformation domain V the integrals (15)-( 17)
must be evaluated numerically. [n several instances however it is possible to express the
integrals as infinite series. provided there is no contribution from the terms involving
G(x.y. :). In this section we will first demonstrate this "analytical" procedure on the
spheroidal region (Fig. I)

(19)

and then obtain complete solutions for the spheroidal region centred at the orlgm
(xu = Yo = :0 = 0). For the spheroidal region (19), and indeed for an arbitrary ellipsoidal
region to be considered numerically in the next section, we introduce ellipsoidal coordinates

'. V. IP

x = r cos 0 cos eP

h .
J' = - , cos V sm eP

a

c
: = -r sin V

a
(20)

such that in general the coordinates of the centroid of region V, Xlh Yo, :0 transform into
'0' Vlh IPo. We have used an overbar to distinguish the ellipsoidal coordinate eP from the
cylindrical coordinate cP appearing in integrals (15)-( 17) and elsewhere. rP is related to cP
through

(21 )

For a spheroidal region, rP = cPo

SAS 2S:&-~
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Fig. t. A half-planc cr:ll.:k. and region V (wilh 1/ '" />, .1'" 01 which has undcrgone Iransforlllalion
str:lins showing the Cartesian and ellipsoidal coonlinale systems.

Tht: lowt:r (/) and uppt:r (II) limits of integration for an arbitrary ellipsoidal rt:gion arc
culculated as follows.

( , ')1". , a" , tr, "
For the rudlus r = .C + j,zr + ;;" ,

wht:re

and:x is the angle between radius vectors r n and r such that

cos (X = cos () cos (<$-<pn)+sin () sin On.

(22)

(23)

(24)

For Po ~ I (where Pn = {(x~) + (aYn/h) "] 11. not to be confused with cylindrical coordinate
p = (x" + y 1

) 1.1 appeuring in integrals (15)-( 17) and elsewhere),

where

(25)
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l'ig. :!. The suhregion V' consisting of the torus", "nd certain portions of C'. C and V.

Po = I

Yo = 0
(26)

1
tan - I ((J}~~); X o > 0

hxo
Fo =

(
m. )tan J ,.0 +n:; X o < O.
h.x o

(27)

For Po < I. - n ::;; IP ::;; n. Finally. the limits on () are calculated from the solution to the
inequality

I-r~ sin~ :l ~ O. (28)

We note first that

=0 = 0

Po = 0

otherwise.

(29)
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The lower and upper limits on 0 following from the solution of (28) are given in
Table I.

In Table I

(0)

For the special region described by (19). a = h. ¢o = 0 and (f = (P. such that po = X O•

F" = O. thereby considerably simplifying the limits of integration. ft should however be
borne in mind that when Ixo/ ~ 0 and IYol < h the integrals have a meaning only in the
mathematical sense. For Ixoj ~ 0 the integrals can be interpreted physically only when
IYol ;?: h. For the region (19) and constant transformation strains the integrals (15)-( 17)
simplify to read

4' nil ,) . flll'lV - - ~ ( .r "111
-, I ell I." F l " (0. (f» dO dcp(_ - ~,)( + \') a "/),

where (m i= n. a = I, II. Ill)

(1)

(33)

and "i" between cis and betwt:en cos IJlsin 0 means that either cos 0 or sin IJ term appt:ars
in (34) together with the corresponding coetllcient a"rV,:,"] or ai, [V,:,,,].

Tahk I. Lower and upper limits on II

r"

<I

>1

II" == IJ

II" = It.'.!
II" = -Ill.!

Il:.! > (I" > (I

0,> 0" > -It".!

I'" < r .:" ~ /)
.:" < 0

Po = I :113 ()
:n < 0

f'" > I

1J,

-n2

-n2
o

-rr 2
-tall I [cos (IP - ,p,,):lan lJ"j

-n 2

n.!

Il
1t,2

- tan (lclls l'P -,p,,) 1;ln O"l
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In (3~), k = 0, I. 2 and i = 0, I. 2. 3 and

cos:k 0
b =--------

• (cos: 0+ :~ sin: 0r~ I'

The only non-zero coefficients aL[c~"l and ,rk, [U~"l are

aL[U';,l: a~)O = -(2-31'), a~;1 = (2-3\"). a~: = -2(2-31')

d;o = -4\", a~1 = 4(4-71'), d;: = -8(2-31')

d~ I = 321', d:: = 64( I - v), a;3 = - 32(2 - v)

(35)

(36)

(37)

ak,[U~~l: clio = 51'-2. a'il = 2-31'. az o = -81', aZI = -16(1-1'). crz: = 8(2-1')

(38)

The next step in the evaluation of integrals (31 )~(33) is to expand ru • rl~llld h. appearing
in (34) in powers of sin Ii and cos Ii. This allows us to express the integrals (31)-(33) as
multiple sums involving powers of sin IJ and cos IJ. but we find that the resulting expressions
for K~(O) arc too cumbersome to be of any practical usc thereby negating any advantage
this procedure may have over the direct numerical integration of (15)-( 17) that will be
presented below. However. for a spheroidal region (a = b) centred at the origin. the integrals
(31) (33) can in fact be evaluated as a single infinite sum using the procedure involving
expansion in powers of sin IJ and cos 0,

In this special case, it can be shown that the only non-zero components of the fun­
damental lidos V~," are V~I. and V:~I, Therefore. for constant transformation strains, we
have

Ki~ = 0

., i-s _ .. - ,r II
KII(O) - ·'I--t.". UtI' dV( + I') . V

., i-s - r III
KIII(O) = (~I--f.I': V,': dV+ v) v'

,
~ ., ., (1-,

where r: r+r-+ ,;' ~ I.
. c'

Ob/afe spheroid, (I > ('

.,' 8.../2 Crr. ( C:)" {4 (3 I)Kil(O) = - -,-, -----;-. Co - 1:". L I - ~ - (2 - 31')8 -, m+ -
(_-1)(1+1) a m~O a 5 4 2

16 (7 I) 64 ( m) (" I)}+-(I+v)(m+1)8- m+- --(11-91') 8 - m+-
15' 4' 2 105 -3 _ 4' 2

(41)

(42)

(43)

(44)

(45)
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-s 4.... 2(1-1'). CT' (C2J{ (3 1\KIII(O) = .---------.-C o -£ ..- ') 1--, -(2+rjB -.m+ ._./
(2 - 1')( I + I') IJ - ",'":11 IJ" 4 2/

4 (7 1') 64( fn ') (II I)}+3(16+1')(m+I)B ~.m+~ - j 3. B "4+m'2 .

Prolate spheroid. a < c

Kr(O) = 0

(46)

(47)

4 h( 1 ,) '( ~)" {.s ....1 - - I . IJ T a
AlidO) = 1 ·1 (0·-/:,,: I 1- •

(_ - 1')( + v) C '" Il C'
(3 I)(2+\')B +fII.
4 :.;

Sphere. (l = C

In (44)(52)

B(p.q) = fiX/' I(I-X)'I 'dx.
Jo

(50)

(51 )

(52)

(53)

The analytical expressions (50)-(52) were also useful for cheding the accuracy of the
general numerical integration procedure which is described in the next section.

4. :-':UMERICAL RESULTS A[\i[) DiSCUSSION

For an arbitrary ellipsoidal domain V centred at x o• Yo. =0

(54)

and constant transformation strains f.,~n. the integrals (15)-( 17) were evaluated numerically
using the Gaussian method. To enhance the rate of convergence of the singular integrals
as R -+ O. ellipsoidal coordinates (20) were chosen which allowed formal integration of
(15)-( 17) with respect to the coordinate r sUl:h that the integrands took the form
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where the upper and lower limits of integration on r are given by (23). The ranges of
integration with respect to /} and <p given by expressions (25)-(29) were each divided into
23 = 8 intervals. with each interval being represented by six. Gauss points.

The accuracy of the numerical integration scheme was checked in two ways. First. by
comparing with the analytical results (50)-(52). It was found that the numerical results
differed from these by less than ±O.O\. Secondly. by increasing the number of intervals to
2~ = 16. It was found that the results hardly differed from those obtained with only 23 = 8
intervals.

The numerical integration scheme was used for an exploration of the problem at hand
for a general ellipsoidal domain V. In particular. attention was focussed on the spherical
domain (a = h = c) and the oblate spheroidal domain with a = b and ale = 5. The choice
of these two shapes was dictated by the fact that zirconia particles are spherical when found
in an alumina matrix or as thin oblate spheroids when found in partially stabilized zirconia.

In an extensive numerical exploration of complex and singular integrals it is essential
to have at least some independent checks on the qualitative. if not the quantitative. accuracy
of the results. This was done by a close examination of the properties of U;.." appearing in
integrals (15)·-(17). It was found. for instance. that U;.." possess several symmetry proper­
ties with respect toy and =which intluence the linal result (i.e. K~). The behaviour of U~"
with respect toy and;;: for various 11/. fI and (X is evident from Table 2. Moreover. it was
found that

K~(-y)= -K~(y); ;;:0=0

Ki~( -;;:) = - Ki~(:); Yo = 0

Ki';( -.1') = Kj';(y); =0 = o. (56)

Finally. it was found that the dominant contributions to Kf. K~ and Ki~1 carne from U~,.

U~I: and U~I;. respectively. The remaining U~'" made but little contribution to K~. Therefore.
Ki~. K~. K~;, exhibited essentially the respective symmetry behaviour of U~Y' U~~ and U~I;

(Tahle 2). This observation was useful not only for performing a qualitative check on the
numerical results. but also in simplifying the graphical presentation of the latter, in that the
stress intensity factors could be plotted to within a factor of the strain t:;m corresponding
to the dominant U~. Thus in the ligures to follow, the scale for Kf should actually be read
as Kfl/:;,.. In dimensioned quantities this scale represents (KfEJa)/r.;v. Similarly, the scale
for K~ in dimensioned quantities should read (K~;EJa)/f.;:, and for K~I should read

.,' 'J r(Killl: a)/I;".
It is now possible to comment on the typical behaviour of K~ as demonstrated by the

numerical integration procedure (v = 0.3). This behaviour was found to be qualitatively
totally consistent with the above observations. Typically, IKrl for ale: = I was found to be
consistently larger lhan that for ale = 5 (Fig. 3). However, the variation of IKtl with
1=01 > 0 was similar for both shapes; 1Krl decreased with increasing 1=01 ~ 0, initially rather
slowly but then more rapidly.

Tahle 2. Behaviour of U:....

mm

xy

.1':

:x

ox=(

U~,{-y)= -U~,{y)

U~,{ -:} = U~,(:)

(,..~,( -.1') = - U~AY)

(,..:, ( -:) = - u:,c:)

U~.(-y)= -U~.(y)

u~.( -:) - U~.(:)

ox =11

U~I,( - y) = U~~(y)

U~~( -:} '" u~t,(:)

u~;( - .1') '" U~;(Y)

U~;( -:) '" - u~;{:)

U~I.{ - y) '" - U~~{Y)

U~~( -:) = - U~l.{:)

IX '" III

U~I:( - y) '" U~l:(y)

u~':(-:} = - U~l:(:}

u;~t( _ y} = U~;l(y)

U:;'( -:) '" u~~(:)

U~I:( - y) = - U~~l(y)

U~I,t( -:) = U:~{:)
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4,..,--..,.---r-...,---..,.---,-__,--;---,..,

3

z,,:O, Yo:1, a/e:l

2

-1

-2

lo=O, Yo=-l, a/e=l

-3

-4 U-_....l.._--l-_---J._......l_----JL.....-_'-_-!-_.J..J

¥4 ~ ~ 0 -~ -~ -~
Xo

Fig. 3. Variation of A'~«()I with x" fur two typil:al valu~"S of .1'" and of aie (a : hI.

The shape of region V has a far more pronounced influence upon IKi~ I than upon
IKfl. IK~ I for aie = 5 is not only much smaller than for £lie = I but it diminishes rapidly
with increasing I:ul > O. For ale == I. IKi~1 seems to achieve (Fig. ..t) the maximum value at
or ncar 1:01 = li2 ,tnd then decreases with increasing I:ul > 1/2.

As far as IKiiJi is concerned. the shape and location of V seems to h,tve an effect on it
similar to that on IKn Thus. IK~d for aie = I is consistently larger than for £lie = 5 (Fig.
5). However, for both sh,tpes it decreases with increasing I:ul > 0, although the rate of
decrease is ditferent. For ale == 5. it decreases rapidly with increasing I:ul > O. but for
ale = I it decreases rather slowly in the beginning.

Up to now. we were only interested in the shape of the transformation domain. We
found in particular that spherical particles give a larger 1K~1 than do oblate spheroids with
long axis normal to the crack front (i.e. parallel to x-direction).

It is known however (Lambropoulos. 1986). that the orientation of the long axis of
oblate spheroids relative to the crack plane has a significant influence on the extent of
change in K, due to dilatational transformation strains. It is therefore of some interest to
examine the influence of orientation of oblate spheroids on the stress intensity factors K~

due to shear tmnsformations stmin. We consider an additional orientation. namely when
the long axis is parallel to the crack front (i.e. parallel to :-direction). An example of this
orientation of oblate spheroids which corresponds in size to the previously considered
orientation (long axis parallel to x-direction) is simulated by choosing (J == h. £lie == 0.2.

When the long axis is parallel to the crack front (i.e. parallel to :-direction) numerical
computations for a = h, ale == 0.2 show. as expected. that the variation of K~(O) is more
pronounced with I:ul than was the case for (J == h. £lie == 5. Thus the maximum value of 1K,I
increases from around 4 at :0 = 0 to about 14 at 1:01 = 0.5 and further to about 75 at
I:ul = 1.0. The increase is even greater in 1Kit I. Its maximum value increases from about
0.6 at :u = 0 through about 21 at 1:01 = 0.5 to about 850 at 1:01 = 1.0. The largest increase
is noticed in IKIlII. Its maximum value increases from about 8 at =n = 0 through about 14
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Fig. 4. Variati\1I1 of "~I{O) with x" for two typical values of .1'" and :" for a spherical region
(<I = h = r).
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Fig. 5. Variation of ,,'~I(O) with x" for two typical values of .1'" and of <III' (<I = h).
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at 1=01 = 0.5 to a colossal 1850 at 1=01 = 1.0. This b~haviour is quite consistent with that
e:'<pected from analytical considerations.

Similar changes to K~(O) can be e:'<pected when the long a:,<is is normal to the crack
plane (i.e. parallel to y-direction). In conclusion. it should be added that further in-depth
numerical ~xploration is in progress to gain a deeper insight into the extent of variation in
K;'(=') due to changes in the position and orientation of ~ -_ In particular. attempts are being
made to derive useful analytical e:,<pressions for K;'(=') in the limit as 11 V -+ o.

Ackmm1t'dt/t'ment-We are grateful to Professor 1. R. Rice for giving us draft and final copIes of the report by
Gao (l9(((().
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APPENDIX A

I:or an aroitrary dnmain 1-, U~, and then:I,'re ;;;' will contain the term Re (;,,, which may be r<:written in a
non-dl11lensinnal form

Rc (;.. '" Re fJ., + 1m G."

-, . q(:-:') .
-- _C,' 1<' + 1m (,.". (AI)

I.ikewise. U'.', ;lI1d U~l,'. and th<:rcfore ;;~ and ;;;'" will contain the terms Re G"" am! 1m G.. ,". respectively. which
may be rewritten as

\A3)

In (AI) (A3). Q = G.• +iG., and P = G••..
To compl.:te th<: discussion. it only remains to e'pr<:ss e'plieitly G." and G.,,,. We oegin with (i.".

(A4)

where

and
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G { [ I}Re -;0 = Co Re w Re ~ - [m w 1m ;;-, . .
G { I I}1m -;0 = Co Re w 1m ;;- + 1m w Re;;- .
• • •

[n (A5)

q+C
w=ln-

q-C

such that

, Co
G(x.y.=-=) = ~w

•
and

R
I I q:+d+qJ[2(d+x)J

e w = - n -'-:----:----.:.~--'--_...:.

2 q:+d-q.../[2(d+x)]

. 2q [m'
1m (r) = san - , > > >

y'[(q'-d)'+(2q 1m 0')

I I {(d+X)': > > (d-X)": }Re"=d'd I1 2d [x'-(=-=')'J±2 2d x(=-=')

I I { (d+X)' : (d_X)Ii: > • }

Irn C= ;f.Te: -2 -·'j.';r .*-=')± '2.T [x--(=-=')'I

where the " - .. sign is chosen whcn (= - =') < O.
Finally. (i.,,, is givcn by

where

G { I I}Re '" = Co Re w Rc f' -1m w 1m r
G { I I}[m - = C Rc w 1m -- + 1m w Re .-.pt. 0 .1 .. 1• • •

and

I ({(d+X)'il., ,1 (d_.t)'il.., 1 _ .' 1 }
Ref' = dOd': 2d [x -3.t(=-=) I± .2d (.-.)[h -(.-.) )

I 1 { (d+X)'/l > " (d_x),·l j , l}
[m" = dOd": - 2d (=-='j(3x--(=-= )')± 2d [x -3x(=-=) .
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(A5)

(A6)

(A7)

(AS)

(A9)

(AIO)
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APPENDIX B

In order to prove that the last term in each of the three e~pressions (15)-(17) vanishes when £~, is a function
of .I' alone. consider the region •. with the dosed. smooth surface

x,(r) ~ x ~ ,{,(.I')

:,(x.r)':;: ~ :,(x.y), (BI)

Within the region V consider the subregion V' consisting of the torus UJ (surface x' +.1" = £'. £« I). and certain
portions of the crack faces C'. C- and the region V. Bueckner (191'7) has shown that G(x.y.:) and G., are
harmonic in .... and G(x. 0.:) and G.,(x. 0.:) are harmonic on C'. C- and w, He has further shown that

lim r , ,d I' = j'" ' ' ,d I',
r.-(J Jv

Referring to Fig, 2 and assuming in the first instance =,(0.0) '" 0 ,ltld :,(0.0) # O. wc hav'c

f 1::,(r)G.,,(,{.r.:) dx <il' d:

= i dx <il' I:;' (,r)[G.,(x. r. :,(x.rl) - G., (x. ,I'. :.(x.r))1

~ f': 1:;'(y)[(;(.\,(r).,I·.:,(x,(r).y» -G(x,(r).r. :,(X,(I').r»
"

- G(.\ ,(,1'),.1',:, (\ ,(.1') • .1'») + G(x 1(,1'). ,1'.:, (x I(1') • .1'))1 <iI'-r, ,:',(r)!G(,,'(I:' -.1")..1'.:,(,)(,:' -.1").,1')) G( ,- "i(I:' -y').r.:,(- ,./(1:' -y').y)

-(;(,,/(1:' -y'),y, :,(".'(1:' -y').y)) +G( -J(I:' -.1")• .1'.:,( - "i(I:' -.1")• .1'))1 dy,

The first integral in the right-hand side of (03) v,wishes because of continuity cunditi(llIs

=,(x,(y).Y) = :I(x,(y).y)

:,(x,(y).Y') = :,(x,(y).r).

;lIld '" gives (with 1111 < I)

-G( -I:J(I - 0').111:. :,( -1:,)(1 -11').111:)

-G(cJ(I-IJ'),/h,:,(I:"i(I-IJ').Ih:))

+ G( -1:",'( I -IJ')./h:.: I ( -1:,,'( 1- 0'). 1h:))jI:.

Since: ,to. 0) '# O. : ,(0. 0) '# O. it is dear from (05) that

lim r 1:;,(y)G.,,(x,y.:) ct.' = 0,
, .n J~

In a similar manner. it may he shown that

limf. 1:;,(y)rG.«, d." = 0,
;&-_1) J"

(B21

(lB)

(Bol)

(Us)

(116)

( 117)

We will now prove the results (Rb). (R7) when: ,(0.0) = 0, In this casc of course: ,(0. 0) '# 0,
From (H5) it is dear that x - O(r.) andy - O(r.), In view of the fact that S' is a quadratic surface it follows

th,lt: - 0(1:), Conscquently.

(IlS)
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and

1
G---.

O(,,'r.)

In th.: right-hand sid.: of (B51. th.: terms

can b.: shown to b.: ofO(-/r.). Th.:refore. th.:se terms vanish as f. - O. and we recover the result (B6).
likewise. in d.:riving the result (B7) we would encounter the terms

which may be rewritten as

607

(B9)

(BIO)

(BII)

(BI2)

In vi.:w of (Bl'() and (B9). the term (B 12) is of O( ,jr.). Therefore it will vanish as f. - O. and we rl,<:over the result
(B7).


